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Abstract—Smart buildings equipped with various
building management systems and digital control sys-
tems produce enormous amounts of sensor data that
can be used to investigate and diagnose operational
issues such as unsatisfactory thermal comfort out-
comes, excessive energy consumption and/or predict-
ing failures before they occur. However, current build-
ing management systems often face the issues with
incomplete or unstructured metadata associated with
sensor data which prevent such pro-active, predictive
and prescriptive analysis. Currently, building service
engineers manually map the sensor data streams to
aid their diagnostic process. This process is expen-
sive, ineffective and is also prone to human errors.
This paper proposes a novel semi-automated approach
that annotates incoming sensor data streams. We also
propose extensions to Project Haystack, a well-known
ontology used for naming conventions and taxonomies
for building equipment and operational data. We have
developed a tool that is currently used by our industry
partner and incorporates the proposed automatic an-
notation approach and maps the data streams to our
Haystack-extended ontology. The tool includes an easy
to use interface for engineers to easily diagnose issues in
mechanical building services. The proposed approach
has been validated via both usability and technical
evaluation.

Index Terms—Smart Building, Sensors, Ontology,
IoT

I. Introduction

Smart buildings include mechanical services such as
heating, cooling, ventilation, vertical transportation etc.,
that are equipped with sensors that produce data about
the service. The sensors and the mechanical services are
mainly controlled by digital control systems that are in-
tegrated by a master controller which provides access to
slave controllers’ data and data storage.

In the commercial, or non-industrial, sectors these inte-
grated control systems are usually referred to as Building
Management Systems (BMS). Almost every building’s
operational data generated by BMS uses a unique non-
standard naming convention to tag the sensor data stream
with metadata [1]. For example, it is very common that
the same variable, “Outside Air Temperature”, is tagged

with different names by different BMS. Adding to this,
there is no consensus of a single data standard for BMS
data streams and this creates significant data heterogene-
ity problems. This introduces the issue of incomplete or
unstructured metadata associated with data streams and
represents a significant obstacle for automated data anal-
ysis at scale [2], [3]. Furthermore, the metadata available
from the BMS environment (and the underlying sensors)
are of low-quality and not well described [4].

Building service engineers called to investigate and
diagnose operational issues of mechanical services. This
diagnostic process usually consists of at least three diag-
nostic steps; the analysis of the physical configuration of a
mechanical system, retrieval of historical sensor data from
BMS and the analysis of BMS historical data. Engineers
who perform these tasks to extract useful information
out of these data streams, generally mechanical engineers,
need to have very high domain expertise and knowledge
of the unique naming convention of the particular BMS
to interpret and analyse the data streams [5]. Typically,
the process of BMS data analysis [6] is time-consuming
and involves several preparatory steps as outlined earlier,
before the data can be analysed.

In its basic form, data analysis involves graphing rel-
evant variables and visual analysis by an experienced
engineer. Most, if not all, of those diagnostic tasks, can
be performed automatically and at scale taking advantage
of appropriately formulated algorithms. Besides, building
data can provide a rich source of insight into building
operation far exceeding a mere fault diagnostic. These
insights can vastly improve both building performance
and increase the productivity of building management
operations. Consequently, if implemented at scale, they
can drastically improve the profitability of commercial real
estate (CRE), and other, asset portfolios.

To address the aforementioned issue that the industry
currently faces in automatically interpreting sensor data
streams from BMS that use different naming conventions,
in this paper, we propose an ontology that can hold more
rich and contextual meta-data, built on top of the existing
Project Haystack ontology [7], and a novel algorithm,
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namely Semi-Automated Technique for Annotating Sensor
data streams (AGSDA), that uses hierarchical clustering
to semi-automatically map BMS metadata following dif-
ferent naming convention on to the proposed extended
Haystack ontology. We also implement a tool that incor-
porates AGSDA for engineers to facilitate fast analysis of
sensor data streams for various purposes such as diagnos-
tics, analysis and predicting failures. The quality of the
hierarchical clustering has been evaluated using a well-
known clustering evaluation metric and the usability of the
tool has been evaluated via a usability study that included
both expert and non-expert users. In particular, this paper
makes the following contributions:

1) An ontological model that extends Project haystack
to provide more contextual information of sensors
with their relationships to each other;

2) AGSDA, an algorithm which can semi-automatically
map a sensor data streams from a BMS to haystack
ontology

3) A tool that incorporates AGSDA that provides en-
gineers with an easy interface to explore and analyse
sensor data streams originating from BMSs. The de-
veloped tool is currently being used by our industry
partner Piechowski Energy as part of their building
management product offering.

4) Experimental evaluations validating the accuracy
of AGSDA and a usability study to evaluate the
usefulness of the proposed tool that incorporates
AGSDA

The rest of the paper is structured as follows; Section II
describes surrounding work relating to this topic, Section
III describes the proposed Ontology, Section IV illustrates
the developed algorithm for mapping sensor data; Section
V describes the proof of concept developed; Section VI
discusses the evaluations of the proposed system and
finally Section VII concludes the paper.

II. Related Work

There have been various attempts at extracting meta-
data from building systems sensor data. Some use tech-
niques such as Random Forrest to train a classifier which
can predict the type of sensor data by learning statis-
tical features embedded in the numerical data such as
mean, max, variation, etc. [5], [8], whose accuracy is very
sensitive to environmental factors such as weather [5].
These attempts have been directed at classifying the types
of sensor point types [9], (for example if a particular
data point is of the type temperature, or pressure, or
volume). But this fails to extract the semantic and con-
textual information encoded within these sensors. There
have been more linguistic approaches which have tried
to extract information from the sensor tag names. Some
of these efforts have been focused on using linguistic
similarity values of sensor sub-tags to match them against
ontologies like Project Haystack semi-automatically [10].
But simply using the highest similarity value to match

a sub-tag name only yielded an accuracy of 16%. The
Zodiac system [11] combines numerical data and linguistic
information using hierarchical clustering and an active
learning random forest to reduce the workload on the
expert in semi-automatic approaches. Another prominent
system introduced the combining of all these linguistic
methods to extract the meta-data encoded in the sensor
tags. They used a programming-by-examples approach
with hierarchical clustering and string similarity along
with a sub-string extraction language to map meta-data
into Project Haystack tags [9]. Our attempt is an extension
of this system with a focus on refining the clustering
quality and mapping it to a general ontology with more
contextual and relationship information.

In the past ten years, or so, there has been an effort
by private and industry organisations to develop an auto-
mated process for building sensor data analytics. Project
Haystack [7] is an example of industry-led, international
effort focused on developing semantic modelling solutions
and a common vocabulary for data from buildings control
systems. However, it is a flat ontology, with minimal
hierarchical structure and standard relationships. There
exist other metadata standards like Industry Foundation
classes standard (IFC) used in construction that aims to
provide a unified format for BMS [12]. However, it is highly
complex and requires a lot of information for each tag,
and since data can be missing and constantly changing
even within similar sensor points, it is impractical to use
IFC. Semantic Sensor Network (SSN) [13], another initia-
tive which provides an ontology for sensor observations
but its high complexity is more suited for developers of
BMS systems. Our ontology aims at bridging this gap by
developing a schema which can be adapted to any BMS
system with little understanding of the underlying details,
while also providing rich hierarchical information of the
sensors and the system as a whole.

III. Extended Haystack Ontology

Many building systems tend to encode all of the meta-
data relating to a sensor such as location, type, equipment
in one string – its “sensor tag” [9]. For example, the tag
FC 1 Outside Air Temp encapsulates the sensor’s type
(Temp), the equipment it is a part of (FC), and attributes
relating to it (Outside Air). There is no schema or ontology
available that describes these links and hierarchies.

Project Haystack is an attempt at standardising indi-
vidual sub-tags, therefore we have used an adapted version
of their taxonomy to develop an ontology along with an
expert. This ontology aims to describe sensor metadata in
a more intuitive way for the experts looking at it, and also
be machine-processable at the same time.

The ontology contains a hierarchy which explains where
a sensor is, which equipment it is a part of, what are its
components and attributes, and what type it is. It also
contains a reference to each of these values. We call these
“types”. The high-level hierarchy of the types is shown
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Fig. 1. High-level hierarchy of the ontology

in figure 1, and a breakdown of these types with relating
haystack tags is shown in table I.

TABLE I
The hierarchy along with relating Haystack tags

Type Values

loc site, building, level, zone
equip fan coil, heating hot water, chiller, air handling unit, . . .
ref equipRef, compRef, pointRef, . . .
comp water, air, damper, . . .
attr entering, leaving, supply, . . .
point temp, volume, pressure, co2, . . .

Most approaches before have looked at point type classi-
fication, such a classifying which “point” a sensor falls into
(eg: temperature, volume, etc.). Our ontology gives the
expert a more holistic view of a sensor and how it relates
to other sensors and allows computers to run analysis on
it based on any of the types we have defined.

When applied to the sensor tag ArtsCentre FC

1 Outside Air Temp, this would result in

{
”loc”: {

”building”: ”ArtsCentre”
},
”attr”:{

”type”:”outside”
},
”comp”:{

”type”:”air”
},
”data point”:”FC 1 Outside Air Temp”,
”equip”:{

”ref”:”1”,
”type”:”fan coil”

},
”point”:{

”type”:” temp ”
}

}

Listing 1. The ontological representaion of the sensor tag
ArtsCentre FC 1 Outside Air Temp.

When stored in a document database, operations on
the sensors become very easy to manipulate and execute.
For instance, if the expert wants to run analysis on all
the pressure points in the 3rd fan coil equipment in the
gymnasium building, they can access all of these points
simply by using {loc.building = ’gymnasium’ AND equip

= ’fan coil’ AND ref.equipRef =3 AND point = ’pressure’

}. This would return only the required points.
The advantage of this methodology is apparent since it

allows for very complex querying of data points using very

intuitive syntax, whereas traditionally, spreadsheets and
intricate regular expressions would be needed to filter out
required points and is usually a labour extensive task. It
should be known that some vendors leave certain metadata
out of the sensor tag so it is impossible to infer these values
from the tag alone. Table II shows two subsets of sensor
tags, obtained from 2 different vendors.

For instance, Group 1 has no location information but
has very rich equipment, component and attribute infor-
mation. Group 1 has been obtained from one building,
therefore the location information such as site and building
can be applied manually for the group as a whole.

Group 2 has very extensive location information but
minimal information about equipment and attributes.
This group is from a BMS that is controlling multiple
buildings within a site therefore location information is
crucial. It is almost impossible to infer any equipment,
component and attribute data from this group and is
impractical for an expert to tag all that information
individually. However, if it is known which buildings/levels
are controlled by certain equipment, this equipment infor-
mation can be applied directly to the sensors with the
appropriate location data.

Table III is an example of the result of mapping a sensor
out of each of the two groups into our described ontology,
by inferring the maximum information available from the
tags using our algorithm.

IV. AGSDA: Semi-Automated technique for

annotating sensor data streams

Our algorithm, AGSDA (AnnotatinG Sensor Data
streAms) utilises the programming-by-examples method-
ology [14], which builds a set of programmatic rules and
repeats what the user has done following some examples.

As shown in table II, the sensors within a group/ven-
dor have similar syntactical schema but this schema can
vary semantically within a group. Therefore, using the
programming-by-examples method for the whole dataset
would not work since the regular expression model it will
build would need to be too complex to cater to all the
different tags. Hence, we use an adapted version of the
algorithm that is discussed in [9].

Algorithm 1 contains several steps, described below. The
first being feature extraction; this converts the set of
raw textual sensor tags into a symbolic representation
since the tags can have very distinct semantic relation-
ships. Let {R1...Rn} be a list of raw sensor tags. We
initially strip the prefix common to the whole data set from
the tags which allow us to detect more subtle similarities
between tags (this is especially true for Group 2 in table
II, where the site name makes up a significant portion
of the tag name). Symbolic features are extracted by
converting alphabetic characters to the letter “1”, numeric
to “2”, white-spaces to “3” and all other characters to
“4”. Adjacent alphabetic and numeric characters (“21” and
“12”) are also made to be “2” to give them the same

196

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 27,2021 at 10:45:48 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
Sample of two different sets of sensor tags from different vendors

Group1 Group2

• Chiller 1 CHW 1 Entering Temp
• Chiller 1 CHW 2 Leaving Temp
• Chiller 2 CHW 2 Entering Temp
• Chiller 2 CHW 2 Leaving Temp
• Chillers Common Header Temp
• Chillers Field Flow Temp
• Chillers Field Return Temp
• FC 1 Exhaust Air Temp
• FC 1 Exhaust Air Volume
• FC 1 Outside Air Temp
• FC 1 Return Air Temp

• MELBOURNE SCHOOL / ARTS CENTRE / AIR CON / LEVEL
1 / W123 Office / ZONE TEMPERATURE

• MELBOURNE SCHOOL / ARTS CENTRE / AIR CON / LEVEL
1 / W117 Latin Classroom / ZONE TEMPERATURE

• MELBOURNE SCHOOL / GYMNASIUM / AIR CON / LEVEL 1
/ ALARM MONITOR

• MELBOURNE SCHOOL / ARTS CENTRE / AIR CON / LEVEL
2 / W225 Artroom Ducted / ZONE TEMPERATURE

• MELBOURNE SCHOOL / ARTS CENTRE / AIR CON / LEVEL
2 / W227 Science Lab A / ZONE TEMPERATURE

• MELBOURNE SCHOOL / GYMNASIUM / AIR CON / LEVEL 2
/ W217 Office / ZONE TEMPERATURE

TABLE III
Example of mapping sensor tags to the ontology

Group1 Group2

{
”data point”: ”FC 1 Exhaust Air Temp”,
”location”: ””,
”equip”: {
”type”: ”Fan Cooler”,

”ref”: ”1”
},
”comp”: {

”type”: ”Exhaust”,
”ref”: ””

},
”attr”: ”Air”,
”point”: ”Temp”

}

{
”data point”: ”MELBOURNE SCHOOL / GYMNASIUM / FIRST FLOOR / AC

→֒ −1−06 Yr 6 Staff Office / ZONE TEMPERATURE”,
”location”: {

”site”: ”CAMBERWELL GRAMMAR”,
”building”: ”MIDDLE SCHOOL”,
”level”: ”FIRST FLOOR”,
”zone”: ”AC−1−06 Yr 6 Staff Office”

},
”equip”: ””,
”comp”: ””,
”attr”: ””,
”point”: ”Temp”

}

weight as numbers since reference systems in most BMS
use a combination of these (eg: 2A, 3C, etc.) to number
components in the building. Finally, these feature vectors
have their repeating features merged, and their lengths
normalised by padding them with “0”, giving us a list
of normalised feature vectors {RVn

1
...RVn

2
}. An example of

this process is showed in figure 2
Agglomerative (bottom-up) hierarchical clustering is

performed on {RVn

1
...RVn

2
} using the UPGMA algorithm

[15] by the Clust function, which uses an unweighted mean
to form flat clusters, with a set threshold of 0. This process
is described in detail later on. The result is a set of clusters
{C1...Cn}. An example of this process is displayed in figure
2.
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FC 1_Return Air Temp

Chiller 1_CHW 1 Entering Temp

equip: chiller

ref: equipRef

comp: chilled water

attr: entering

point: temp

{
				"attr":{
								"type":"air"
				},
				"comp":{
								"type":"exhaust"
				},
				"data_point":"FC	2_Exhaust	Air	Temp",
				"equip":{
								"ref":"2",
								"type":"fan	cooler"
				},
				"point":{
								"type":"temp"
				}
}
{
				"attr":{
								"type":"air"
				},
				"comp":{
								"type":"outside"
				},
				"data_point":"FC	1_Outside	Air	Temp",
				"equip":{
								"ref":"1",
								"type":"fan	cooler"
				},
				"point":{
								"type":"temp"
				}
}
{
				"attr":{
								"type":"air"
				},
				"comp":{
								"type":"return"
				},
				"data_point":"FC	1_Return	Air	Temp",
				"equip":{
								"ref":"1",
								"type":"fan	cooler"
				},
				"point":{
								"type":"temp"
				}
}

FC 2_Exhaust Air Volume
FC 1_Outside Air Temp
FC 1_Return Air Temp

FC 1_Exhaust Air Temp

(example) (cluster)

String Splitting

ref: compRef
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Fig. 2. An example of the process of feature extraction and clustering

One randomly selected sensor tag from each cluster is
presented for expert tagging (ExTag), where the expert

needs to tag or “answer” these examples (denoted by A)
where Ai < T S

i, OT
i, OV

i > are the expert provided sub-
tags, their types and values (from our described ontology
O) respectively. This information can be entered through
the user-interface we have developed figure 3. Figure 4
shows how an expert might answer and how it might be
represented in our ontology.

Fig. 3. The interface used for expert tagging in our system

The 4th step is string splitting where, based on the
Ai < T s

i > and their positions for each cluster, the rest
of the tags in the cluster are split accordingly. This is per-
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								"type":"air"
				},
				"comp":{
								"type":"exhaust"
				},
				"data_point":"FC	2_Exhaust	Air	Temp",
				"equip":{
								"ref":"2",
								"type":"fan	cooler"
				},
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				}
}
{
				"attr":{
								"type":"air"
				},
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				},
				"data_point":"FC	1_Outside	Air	Temp",
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								"ref":"1",
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				},
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								"type":"temp"
				}
}
{
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				},
				"comp":{
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				"data_point":"FC	1_Return	Air	Temp",
				"equip":{
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				},
				"point":{
								"type":"temp"
				}
}
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Fig. 4. How expert tagging is interpreted within the ontology

formed by the FlashFill function [14] which automatically
uses the given user examples to develop rules to apply to
the rest of the data, to return {C1 < {T s

i...T
s

i} > ...Cn <

{T s
i...T

s
i} >}, a list of sub-tags for each cluster (C).

The next steps finalise the mapping. The types from
the answers, Aj < OT

j >, are assigned to all the types
of the sub-tags Ci < T s

i >T , at those positions. Every
sub-tag that isn’t of type “ref” is string matched using
the values in our ontology OV , for that specific type
OV [Aj < OT

j >], to give a list of string-matched sub-tags
values, {S1...Sn}.

Validate denotes the expert validation of these sub-
tags to produce {SV

1...SV
n}, a list of verified sub-tags

values. Since most of the sensor names in any data set is
usually a combination of the same set of words, the number
of sub-tags to verify are usually very small and is the only
verification step we need. These are stored in the database
since they can be used for subsequent mapping of data to
reduce the need for expert validation. With time, the sub-
tags and the effort required for verification will decrease
until only BMS specific obscure tags are left.

Finally, Apply will apply these verified sub-tag values,
to their respective sub-tag. The final output is denoted by
{T1 < T s

i, OT
i, OV

i > ...Tn < T s
n, OT

n, OV
n >}, a list

of tags, which each has its own set of subtags, with their
respective types and values from our ontology.

V. BMS Data Analysis Tool - Implementation

In this section, we provide an architecture of the pro-
posed tool that 1) maps BMS sensor data streams using
AGSDA algorithm to the extended haystack ontology and
2) provide an easy to use interface for engineers to explore
and analyse the sensor data streams produced by the BMS.
The tool is currently integrated as part of the product
offering of our industry partner Piechowski Energy.

A. System Architecture

Figure 5 provides an overview of the BMS data analysis
tool. The system has three main layers; Data Layer, Data
Mapping layer and Presentation layer. The system takes
input from the BMS and processes the raw sensor tags
within the Data Mapping layer while also taking input
from an expert in parallel to aid with the mapping process
where the resulting data is stored, in the Data layer.

We have implemented the AGSDA algorithm and the
proposed ontology to develop a working system that when

Algorithm 1

1: Input: {R1...Rn}
2: Output: {T1 < T s

1, OT
1, OV

1 > ...Tn <

T s
1, OT

1, OV
1 >}

3: pre ← GetPre({R1...Rn})
4: for {R1...Rn} do

5: RV
i ← Trim (Ri, pre)

6: RV
i ← Replace(([a-zA-Z],1),([\d],2),([\s],3),([̂a-zA-

Z\d\s],4), RV
i )

7: RV
i ← Replace(([12—21],2), RV

i )
8: RV

i ← Merge(RV
i )

9: end for

10: {RVn1 ...RVn2} ← Norm({Rv1 ...Rv2} , O)
11: {C1...Cn} ← Clust({Rvn1 ...Rvn2}, UPGMA, 0)
12: for {C1...Cn} do

13: Ai < T S
i, OT

i, OV
i > ← ExTag

(Ci[rand(len(Ci))])
14: end for

15: for {C1...Cn} do

16: {C1 < {T S
i. . . T S

i} > ...Cn < {T S
i. . . T S

i} >} ←
FlashFill(Ci, Ai < T S

i >)
17: end for

18: for A1 < Ts1 >...An < T S
n > do

19: for {C1 < {Ts1
. . . Ts1

} > . . . Cn < {T S
n. . . T S

n} >}
do

20: Ci < T S
i >[pos(Aj < T S

j >)]T ← Aj < OTj >

21: if Aj < OTj
> 6= OT [’ref’] then

22: Ci[pos(Aj < T S
j >)]V = SMatch(Ci < T S

i >

[pos(Aj < T S
j >)],′ levenshtein′,OV [Aj <

OTj>], DB.Get({SV1
...SV

n}))
23: {S1...Sn} + = Ci[pos(Ai < T S

i >)]V

24: else

25: Ci[pos(Ai < T S
i >)]V ← Ai < OVi

>

26: end if

27: end for

28: end for

29: {SV
1...SV

n} ← V alidate({S1...Sn})
30: DB.Store({SV

1...SV
n})

31: {T1 < T S
i, OT

i, OV
i > ...Tn < T S

n, OT
n, OV

n >} ←
Apply({C1 < {T S

i. . . T S
i} > . . . Cn < {T S

i. . . T S
i} >

}V ,{SV
1...SV

n})

given a list of sensor tags from any BMS, carries out the
process of extracting and mapping the meta-data onto
our ontology (figure 6). Figure 6 also shows the interface
for the data analytics platform that uses the output
of this process. It shows a high-level breakdown of the
temperature distribution in relation to the setpoints for 2
buildings in the system. The mapped data has allowed us
to easily analyse and categorise data into buildings. There
is a multitude of practical use-cases this tool enables, one
of which is described below.

• Point specific analysis: What the ontology enables
us to do after the data has been mapped, is allow
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Fig. 5. System Overview

us to query a building to access data with very
specific properties. One such use case would be testing
if the heaters/cooling systems in a specific building
(loc.building) are over-heating/cooling. The expert
can easily query temperature points (point.temp) and
analyse their values to a check where in the building
(loc.zone) are the sensors reporting values outside
a set range. This kind of analysis helps in efficient
identifying where energy can be saved in a building
without the expert having to wrangle through enor-
mous amounts of data. It also removes the need to
cater for all different BMS names and schema when
querying the data (for example, different BMS can use
temp, T, temperature, etc, all to refer to a single type
of point, standardised to “temp” in our ontology).
Once problems are identified, the mapped sensors also
allow the expert to resolve them faster by letting them
locate them sooner.

VI. Evaluation

To validate the proposed AGSDA algorithm two data
sets were used containing 115 and 112 data points from
the different BMS vendors. These data are collected from

 

 

 

Raw BMS Sensor tag data 

stream ARTS CENTRE / AIR CON / LEVEL 1 / W13 Office / ZONE TEMP 

ARTS CENTRE / AIR CON / LEVEL 1 W7 Classroom / ZONE TEMP 

GYMNASIUM / AIR CON / LEVEL 1 / ALARM MONITOR 

ARTS CENTRE / AIR CON / LEVEL 2 / W5 Artroom / ZONE TEMP 

ARTS CENTRE / AIR CON / LEVEL 2 / Science Lab A / ZONE  
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Fig. 6. Overview of how a raw sensor data stream is converted (using
our proposed system) into a dashboard (implemented by our industry
partner) monitoring temperature point sensors at a building level,
displaying a breakdown of the temperature zones, and listing issues
which have been identified

a local school in Victoria, Australia. Though our dataset is
small, this is a representation of real-world settings. This
dataset served our purpose as it is hard to obtain large
data for such settings. Only metadata (i.e., tag names) are
considered in the evaluation. The system is implemented
using python Django and deployed on a cloud server (AWS
EC2 instance, 2 GB ram and 3.3 GHz Intel Scalable
Processor). Although performance is not the aim of our
system it is worth noting that the feature extraction and
clustering process was completed in 4 ms and 13 ms for
each dataset respectively.

A. Evaluation of AGSDA

Agglomerative clustering, a bottom-up hierarchical clus-
tering approach underpins AGSDS. In such a method the
number of clusters does not need to be known prior to
clustering which allows us to extract the naturally occur-
ring clusters out of the data set. Each data point starts
as their own cluster and then joins based on similarity
to form a dendrogram or tree structure figure 7. There
exist a plethora of linkage algorithms that can be used
for hierarchical clustering. To seek out the most fitting
linkage method the Cophenetic Correlation Coefficient
(CCC) is used as an evaluation metric. This calculates the
goodness of fit and evaluates different types of clustering
methodologies.

Level 1

Level 2

Level 3

Level n

RVn2RVn1 RVnn

C1,1

C2,1

C1,n

C2,n

Cn,1

RVn3 RVn4RVn3

C1,2

Fig. 7. The agglomerative clustering starting with all points as their
own clusters and combining the closest pairs together using UPGMA,
until there is only 1 cluster left. Our threshold value helps us obtain
the relevant clusters at the right level

CCC was calculated for six common types of
linkage methods; ward, median(WPGMC), weighted
(WPGMA), complete, single and average (UPGMA),
against five popular distance metrics; Euclidean, squared
Euclidean (sqeuclidean), Cityblock (Manhattan), Maha-
lanobis, Minkowski, Hamming, Chebyshev and Jaccard for
a group of sensor tags from one building. The CCC values
for this are presented in table IV.

We can conclude from this set of evaluations that the
average (UPGMA) algorithm performs the best across
the board, regardless of the distance metric used. In the
average method, the new groups are formed by combining
pairs where all pairwise distances contribute equally to
each mean, and this is the arithmetic mean distance to all
the members within that group.
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TABLE IV
The CCC evaluation for different linkage methods against

different distance metrics

ward median weighted complete single average
euclidean 0.7733 0.9988 0.9988 0.9981 .9992 0.9992

sqeuclidean 0.5707 0.9519 0.9519 0.9461 0.9593 0.9598

cityblock 0.7733 0.9988 0.9988 0.9981 0.9992 0.9992

mahalanobis 0.7733 0.9988 0.9988 0.9981 0.9992 0.9992

minkowski 0.7733 0.9988 0.9988 0.9981 0.9992 0.9992

hamming 0.3605 0.193 0.193 0.1995 0.184 0.1834
chebyshev 0.7733 0.9988 0.9988 0.9981 0.9992 0.9992

jaccard 0.3605 0.193 0.193 0.1995 0.184 0.1834

We have also compared the final clusters produced by
using this average method with the distance metrics that
had high CCC values (Euclidean, Cityblock, Mahalanobis,
Minkowski and Chebyshev), and found that their effect
on the clusters was negligible since the clusters produced
were almost always identical. For this evaluation and the
running of the algorithm, a cut-off threshold of 0 was
used, which is the maximum inter-cluster distance allowed.
Having 0 as the threshold enabled us to form clusters
with syntactically identical tags in each cluster, making
the next step of expert tagging much more efficient.

B. Usability Evaluation

A usability study is conducted with two sets of partici-
pants, experts (mechanical engineers) and non-experts, to
gauge the effectiveness of our proposed tagging system on
the workload of experts. The inclusion of non-experts in
the study gives us a better understanding of the learn-
ability of the system and helps us evaluate whether the
previously expert-only task can now be delegated to non-
experts. The experiment involves tagging a real dataset
of raw sensor names using the developed system. All
participants are instructed about the aim of the system
and our proposed hierarchy with an example. Their main
objective is to use the system to extract as much meta-
data as they can from the presented dataset.

The study consisted of 3 experts and 2 non-expert
users, with the dataset consisting of 28 raw sensor points
obtained from the BMS of a local high school. Even a rel-
atively small dataset such as this would traditionally take
experts a painstakingly long time to complete. Moreover,
the use of this dataset helped to avoid overwhelming the
participants during the test, which is likely to influence
the usability results of the study. Though the participant
size is small (only 5), this would allow us to realise 85%
of usability issues [16], [17]. All participants performed the
task of mapping the data individually in separate sessions.

The required time to complete the tagging is recorded,
and after the study, participants are given the stan-
dardised psychometric Post-Study System Usability Ques-
tionnaire (PSSUQ) to complete. Standardised post-study
questionnaires such as the PSSUQ are increasingly pop-
ular due to their many advantages such as replicability,
objectivity, quantification, etc. [18], [19]. Although many
other standardised usability questionnaires exist (such as
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Fig. 8. Summary of the overall score and the sub-scores (SysUse,
InfQual, IntQual) for the two types of users, where lower scores
indicate a higher degree of perceived usability

SUS, SUMI [18]), the PSSUQ offers 3 additional sub-
scales to rate user’s responses; System Quality/Usefulness
(SysQual/SysUse), Information Quality (InfoQual), and
Interface Quality (IntQual). It comprises of 16 questions,
where scores can take any value between 1 and 7 with lower
scores displaying a higher degree of user satisfaction. For
our study, we used version 3 [18] of the PSSUQ which has
been refined over the years to improve its reliability.

The mean scores and sub-scores from the PSSUQ are
shown in figure 8, the study as a whole had an overall
PSSUQ score of 2.42. Since there have been no similar eval-
uations completed to compare this set of results against,
we will refer to the PSSUQ norms, calculated from 21
studies and 210 participants as a reference point [18].

The AGSDA algorithm, after performing the feature
extraction and clustering process, presented to the users
with just 2 examples to tag for the whole dataset, and due
to this he time taken to complete the whole task of tagging
28 sensors did not take more than 15 minutes for any of
the participants. This indicates a substantial improvement
in time while using this system in comparison to the
traditional methods of manually tagging datasets.

The SysUse and IntQual sub-scores are important since
it indicates the actual usefulness of the system developed.
And since the algorithm and the ontology developed is
independent of the interface, the IntQual can vary depend-
ing on the implementation of our proposed methods. The
reliabilities for the scores of the PSSUQ are very high,
SysUse: 0.9, InfoQual: 0.91, InfQual :083 and Overall: 0.94
[18]. The mean SysUse score of 2.04 from our study is
below the norm’s (µ = 2.8, 99% CI [2.57, 3.02]) 99%
confidence interval and the InfoQual sub-score of 2.93 is
below the norm as well (norm: µ = 3.2, 99% CI [2.79,
3.24]).

It can be safe to assume that given the high reliability
of SysUse an InfoQual, our study shows that both experts
and non-experts had a very high perceived usability re-
garding the usefulness of the system and quality of the
information provided. One question from the questionnaire
of significance was, “I believe I could become productive
quickly using this system”, which had a score of 2.67 from
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the experts (norm: µ = 2.86, 99% CI [2.54, 3.17]). This
directly fulfils one of the main aims of AGSDA and the
proposed ontology; reducing the workload of the experts
and increasing their productivity. The non-experts too
had good scores and they all managed to complete the
presented task which points to the fact that the system
can be adopted by users who are not mechanical engineers;
which also proves to fulfil the aim of reducing the workload
from the experts.

Other scores of the study also indicated high satisfaction
in usability when compared with the PSSUQ norms; Over-
all - 2.81 (norm: µ = 2.82, 99% CI [2.62, 3.02]), IntQual -
2.58 (norm: µ = 2.49, 99% CI [2.28, 2.71])

VII. Conclusion

One of the first tasks in implementing sensor data based
solutions is resolving issues related to the semantics of
metadata of data points. Our experience indicates that
most of the industry participants agree that resolving
metadata mapping issues is one of the more time con-
suming and costly tasks, which often significantly increase
the price of the service, negatively impacting on the
affordability of such services. It is therefore imperative,
from the industry growth perspective, that those issues
are addressed and resolved by means of standardised
semantics of data points.

In this paper, we propose AGSDA, a novel algorithm
that automatically maps heterogeneous BMS sensor data
streams into an ontology for further analysis. We also ex-
tended a well-known ontology, Project Haystack to fit our
proposed hierarchical data mapping and developed a tool
that implements AGSDA and the ontology. The tool and
the algorithm have been co-designed and developed jointly
with our industry partner and is currently integrated into
an industry data analytical system where it has been used
and tested by industry professionals. Our contributions
have undergone both a technical and usability evaluation
to deem its efficacy and its ability to reduce the workload
on experts analysing BMS data.
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